Leishmania tarentolae: a vaccine platform to target dendritic cells ... - Parasites & Vectors

  • Worbs T, Hammerschmidt SI, Förster R. Dendritic cell migration in health and disease. Nat Rev Immunol. 2017;17:30–48.

    Article  CAS  Google Scholar 

  • Martínez-López M, Soto M, Iborra S, Sancho D. Leishmania hijacks myeloid cells for immune escape. Front Microbiol. 2018;9:883.

    Article  Google Scholar 

  • Liu D, Uzonna JE. The early interaction of Leishmania with macrophages and dendritic cells and its influence on the host immune response. Front Cell Infect Microbiol. 2012;2:83.

    Article  Google Scholar 

  • Saljoughian N, Taheri T, Rafati S. Live vaccination tactics: possible approaches for controlling visceral leishmaniasis. Front Immunol. 2014;5:134.

    Article  Google Scholar 

  • Moafi M, Rezvan H, Sherkat R, Taleban R. Leishmania vaccines entered in clinical trials: a review of literature. Int J Prev Med. 2019;10:95.

    Article  Google Scholar 

  • Volpedo G, Bhattacharya P, Gannavaram S, Pacheco-Fernandez T, Oljuskin T, Dey R, et al. The history of live attenuated centrin gene-deleted Leishmania vaccine candidates. Pathogens. 2022;11:431.

    Article  CAS  Google Scholar 

  • Kedzierski L, Zhu Y, Handman E. Leishmania vaccines: progress and problems. Parasitology. 2006;133:87–112.

    Article  Google Scholar 

  • Detmer A, Glenting J. Live bacterial vaccines—a review and identification of potential hazards. Microb Cell Fact. 2006;5:23.

    Article  Google Scholar 

  • Lobo N, Brooks NA, Zlotta AR, Cirillo JD, Boorjian S, Black PC, et al. 100 years of Bacillus Calmette-Guérin immunotherapy: from cattle to COVID-19. Nat Rev Urol. 2021;18:611–22.

    Article  CAS  Google Scholar 

  • Mouhoub E, Domenech P, Ndao M, Reed MB. The diverse applications of recombinant BCG-based vaccines to target infectious diseases other than tuberculosis: an overview. Front Microbiol. 2021;12:757858.

    Article  Google Scholar 

  • Mendoza-Roldan JA, Zatelli A, Latrofa MS, Iatta R, Bezerra-Santos MA, Annoscia G, et al. Leishmania (Sauroleishmania) tarentolae isolation and sympatric occurrence with Leishmania (Leishmania) infantum in geckoes, dogs and sand flies. PLoS Negl Trop Dis. 2022;16:e0010650.

    Article  CAS  Google Scholar 

  • Klatt S, Simpson L, Maslov DA, Konthur Z. Leishmania tarentolae: Taxonomic classification and its application as a promising biotechnological expression host. PLoS Negl Trop Dis. 2019;13:e0007424.

    Article  CAS  Google Scholar 

  • Ranque P. Étude morphologique et biologique de quelques Trypanosomidés récoltés au Sénégal. PhD thesis. Marseille: Université d'Aix-Marseille II; 1973.

  • Wenyon CM. Observations on the intestinal protozoa of three Egyptian lizards, with a note on a cell-invading fungus. Parasitology. 1920;12:350–65.

    Article  Google Scholar 

  • Lewis DJ. The phlebotomine sandflies (Diptera: Psychodidae) of the Oriental Region. Syst Entomol. 1987;12:163–80.

    Article  Google Scholar 

  • Poinar G Jr, Poinar R. Evidence of vector-borne disease of early Cretaceous reptiles. Vector Borne Zoonotic Dis. 2004;4:281–4.

    Article  Google Scholar 

  • Poinar G Jr, Poinar R. Paleoleishmania proterus n. gen., n. sp., (Trypanosomatidae: Kinetoplastida) from Cretaceous Burmese amber. Protist. 2004;155:305–10.

    Article  Google Scholar 

  • Schönian G. Genetics and evolution of Leishmania parasites. Infect Genet Evol. 2017;50:93–4.

    Article  Google Scholar 

  • Akhoundi M, Kuhls K, Cannet A, Votýpka J, Marty P, Delaunay P, et al. A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLoS Negl Trop Dis. 2016;10:e0004349.

    Article  Google Scholar 

  • Telford SRJ. A review of trypanosomes of gekkonid lizards, including the description of five new species. Syst Parasitol. 1995;31:37–52.

    Article  Google Scholar 

  • Sloboda M, Kamler M, Bulantová J, Votýpka J, Modrý D. A new species of Hepatozoon (Apicomplexa: Adeleorina) from Python regius (Serpentes: Pythonidae) and its experimental transmission by a mosquito vector. J Parasitol. 2007;93:1189–98.

    Article  CAS  Google Scholar 

  • Halla U, Korbel R, Mutschmann F, Rinder M. Blood parasites in reptiles imported to Germany. Parasitol Res. 2014;113:4587–99.

    Article  Google Scholar 

  • Killick-Kendrick R, Lainson R, Rioux JA, Saf'janova VM. The taxonomy of Leishmania-like parasites of reptiles. In: Rioux JA, editor. Leishmania: Taxonomie et phylogenèse. Application Éco-epidemiologiques (Colloque International du CNRS/INSERM, 1984). Montpellier: MEE; 1986. p. 143–8.

  • Maroli M, Gramiccia M, Gradoni L, Ready PD, Smith DF, Aquino C. Natural infections of Phlebotomine sandflies with Trypanosomatidae in central and south Italy. Trans R Soc Trop Med Hyg. 1988;82:227–8.

    Article  CAS  Google Scholar 

  • Rashti MS, Mohebali M. Natural promastigote infection of Sergentomyja sintoni its seasonal variation and reservoir host in Turkemen Sahapa Iran. Iran J Public Health. 1994;23:41–50.

    Google Scholar 

  • Karimi A, Hanafi-Bojd AA, Yaghoobi-Ershadi MR, Akhavan AA, Ghezelbash Z. Spatial and temporal distributions of phlebotomine sand flies (Diptera: Psychodidae), vectors of leishmaniasis, in Iran. Acta Trop. 2014;132:131–9.

    Article  Google Scholar 

  • Abbate JM, Maia C, Pereira A, Arfuso F, Gaglio G, Rizzo M, et al. Identification of trypanosomatids and blood feeding preferences of phlebotomine sand fly species common in Sicily, Southern Italy. PLoS ONE. 2020;15:e0229536.

    Article  CAS  Google Scholar 

  • Maia C, Depaquit J. Can Sergentomyia (Diptera, Psychodidae) play a role in the transmission of mammal-infecting Leishmania? Parasite. 2016;23:55.

    Article  Google Scholar 

  • Pombi M, Giacomi A, Barlozzari G, Mendoza-Roldan J, Macrì G, Otranto D, et al. Molecular detection of Leishmania (Sauroleishmania) tarentolae in human blood and Leishmania (Leishmania) infantum in Sergentomyia minuta: unexpected host-parasite contacts. Med Vet Entomol. 2020;34:470–5.

    Article  CAS  Google Scholar 

  • Latrofa MS, Mendoza-Roldan J, Manoj R, Dantas-Torres F, Otranto D. A duplex real-time PCR assay for the detection and differentiation of Leishmania infantum and Leishmania tarentolae in vectors and potential reservoir hosts. Entomol Gen. 2021;41:543–51.

    Article  Google Scholar 

  • Mendoza-Roldan JA, Latrofa MS, Iatta R, Manoj RRS, Panarese R, Annoscia G, et al. Detection of Leishmania tarentolae in lizards, sand flies and dogs in southern Italy, where Leishmania infantum is endemic: hindrances and opportunities. Parasit Vectors. 2021;14:1–12.

    Article  Google Scholar 

  • Quate LW. Phlebotomus sandflies of the Paloich area in the Sudan (Diptera, Psychodidae). J Med Entomol. 1964;1:213–68.

    Article  CAS  Google Scholar 

  • Adler S, Theodor O. Observations on Leishmania ceramodactyli n.sp. Trans R Soc Trop Med Hyg. 1929;22:343–55.

    Article  Google Scholar 

  • Ticha L, Kykalova B, Sadlova J, Gramiccia M, Gradoni L, Volf P. Development of various Leishmania (Sauroleishmania) tarentolae strains in three Phlebotomus species. Microorganisms. 2021;9:2256.

    Article  CAS  Google Scholar 

  • Diaz-Albiter HM, Regnault C, Alpizar-Sosa EA, McGuinness D, Barrett M, Dillon RJ. Non-invasive visualisation and identification of fluorescent Leishmania tarentolae in infected sand flies. Wellcome Open Res. 2018;3:160.

    Article  Google Scholar 

  • Lainson R, Shaw JJ. Evolution, classification and geographical distribution. In: Peters W, Killick-Kendrick R, editors. The Leishmaniases in biology and medicine, vol. 1. Biology and epidemiology. London: Academic; 1987. p. 1–120.

  • Adler S, Theodor O. Investigation on Mediterranean kala azar X—a note on Trypanosoma platydactyli and Leishmania tarentolae. Proc R Soc B Biol Sci. 1935;116:543–4.

    Google Scholar 

  • Novo SP, Leles D, Bianucci R, Araujo A. Leishmania tarentolae molecular signatures in a 300 hundred-years-old human Brazilian mummy. Parasit Vectors. 2015;8:72.

    Article  Google Scholar 

  • Manson-Bahr PE, Heisch RB. Transient infection of man with a Leishmania (L. adleri) of lizards. Ann Trop Med Parasitol. 1961;55:381–2.

    Article  CAS  Google Scholar 

  • Adler S. The behavior of a lizard Leishmania in hamsters and baby mice. Rev Inst Med Trop Sao Paulo. 1962;4:61–4.

    CAS  Google Scholar 

  • Breton M, Tremblay MJ, Ouellette M, Papadopoulou B. Live nonpathogenic parasitic vector as a candidate vaccine against visceral leishmaniasis. Infect Immun. 2005;73:6372–82.

    Article  CAS  Google Scholar 

  • Breton M, Zhao C, Ouellette M, Tremblay MJ, Papadopoulou B. A recombinant non-pathogenic Leishmania vaccine expressing human immunodeficiency virus 1 (HIV-1) Gag elicits cell-mediated immunity in mice and decreases HIV-1 replication in human tonsillar tissue following exposure to HIV-1 infection. J Gen Virol. 2007;88:217–25.

    Article  CAS  Google Scholar 

  • Taylor VM, Muñoz DL, Cedeño DL, Vélez ID, Jones MA, Robledo SM. Leishmania tarentolae: utility as an in vitro model for screening of antileishmanial agents. Exp Parasitol. 2010;126:471–5.

    Article  CAS  Google Scholar 

  • Varotto-Boccazzi I, Garziano M, Cattaneo GM, Bisaglia B, Gabrieli P, Biasin M, et al. Leishmania tarentolae as an antigen delivery platform: dendritic cell maturation after infection with a clone engineered to express the SARS-CoV-2 spike protein. Vaccines. 2022;10:803.

    Article  CAS  Google Scholar 

  • Pozio E, Gramiccia M, Gradoni L, Maroli M. Hemoflagellates in Cyrtodactylus kotschyi (Steindachner, 1870) (Reptilia, Gekkonidae) in Italy. Acta Trop. 1983;40:399–400.

    CAS  Google Scholar 

  • Mendoza-Roldan JA, Latrofa MS, Tarallo VD, Manoj RR, Bezerra-Santos MA, Annoscia G, et al. Leishmania spp. in Squamata reptiles from the Mediterranean basin. Transbound Emerg Dis. 2021;69:2856–66.

    Article  Google Scholar 

  • Iatta R, Mendoza-Roldan JA, Latrofa MS, Cascio A, Brianti E, Pombi M, et al. Leishmania tarentolae and Leishmania infantum in humans, dogs and cats in the Pelagie archipelago, southern Italy. PLoS Negl Trop Dis. 2021;15:e0009817.

    Article  Google Scholar 

  • Cavalera MA, Iatta R, Panarese R, Mendoza-Roldan JA, Gernone F, Otranto D, et al. Seasonal variation in canine anti-Leishmania infantum antibody titres. Vet J. 2021;271:105638.

    Article  CAS  Google Scholar 

  • Gomes AR, Byregowda SM, Veeregowda BM, Balamurugan V. An overview of heterologous expression host systems for the production of recombinant proteins. Adv Anim Vet Sci. 2016;4:346–56.

    Article  Google Scholar 

  • Niimi T. Recombinant protein production in the eukaryotic protozoan parasite Leishmania tarentolae: a review. Methods Mol Biol. 2012;824:307–15.

    Article  CAS  Google Scholar 

  • Rooney B, Piening T, Büscher P, Rogé S, Smales CM. Expression of Trypanosoma brucei gambiense antigens in Leishmania tarentolae. Potential for use in rapid serodiagnostic tests (RDTs). PLoS Negl Trop Dis. 2015;9:e0004271.

    Article  Google Scholar 

  • Rezaei Z, Van Reet N, Pouladfar G, Kühne V, Ramezani A, Sarkari B. Expression of a rK39 homologue from an Iranian Leishmania infantum isolate in Leishmania tarentolae for serodiagnosis of visceral leishmaniasis. Parasit Vectors. 2019;12:593.

    Article  CAS  Google Scholar 

  • Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367:1260–3.

    Article  CAS  Google Scholar 

  • Baechlein C, Meemken D, Pezzoni G, Engemann C, Grummer B. Expression of a truncated hepatitis E virus capsid protein in the protozoan organism Leishmania tarentolae and its application in a serological assay. J Virol Methods. 2013;193:238–43.

    Article  CAS  Google Scholar 

  • Varotto-Boccazzi I, Manenti A, Dapporto F, Gourlay LJ, Bisaglia B, Gabrieli P, et al. Epidemic preparedness-Leishmania tarentolae as an easy-to-handle tool to produce antigens for viral diagnosis: application to COVID-19. Front Microbiol. 2021;12:736530.

    Article  Google Scholar 

  • Pion C, Courtois V, Husson S, Bernard MC, Nicolai MC, Talaga P, et al. Characterization and immunogenicity in mice of recombinant influenza haemagglutinins produced in Leishmania tarentolae. Vaccine. 2014;32:5570–6.

    Article  CAS  Google Scholar 

  • Sodoyer R. Expression systems for the production of recombinant pharmaceuticals. BioDrugs. 2004;18:51–62.

    Article  CAS  Google Scholar 

  • Chang KP, Fish WR. Leishmania. In: Jensen JB, editor. In vitro cultivation of protozoan parasites. Boca Raton: CRC Press Inc; 1983. p. 111–53.

    Google Scholar 

  • Fritsche C, Sitz M, Weiland N, Breitling R, Pohl HD. Characterization of the growth behavior of Leishmania tarentolae: a new expression system for recombinant proteins. J Basic Microbiol. 2007;47:384–93.

    Article  CAS  Google Scholar 

  • Gaughan PLZ, Krassner SM. Hemin deprivation in culture stages of the hemoflagellate, Leishmania tarentolae. Comp Biochem Physiol B. 1971;39:5–18.

    Article  CAS  Google Scholar 

  • Habibzadeh S, Doroud D, Taheri T, Seyed N, Rafati S. Leishmania parasite: the impact of new serum-free medium as an alternative for fetal bovine serum. Iran Biomed J. 2021;25:349–58.

    Google Scholar 

  • Riedel S. Edward Jenner and the history of smallpox and vaccination. Proc (Bayl Univ Med Cent). 2005;18:21–5.

    Google Scholar 

  • Aguilar-Be I, da Silva Zardo R, Paraguai de Souza E, Borja-Cabrera GP, Rosado-Vallado M, Mut-Martin M, et al. Cross-protective efficacy of a prophylactic Leishmania donovani DNA vaccine against visceral and cutaneous murine leishmaniasis. Infect Immun. 2005;73:812–9.

    Article  CAS  Google Scholar 

  • Nico D, Gomes DC, Alves-Silva MV, Freitas EO, Morrot A, Bahia D, et al. Cross-protective immunity to Leishmania amazonensis is mediated by CD4+ and CD8+ epitopes of Leishmania donovani nucleoside hydrolase terminal domains. Front Immunol. 2014;5:189.

    Google Scholar 

  • Resende LA, Roatt BM, Aguiar-Soares RD, Viana KF, Mendonça LZ, Lanna MF, et al. Cytokine and nitric oxide patterns in dogs immunized with LBSap vaccine, before and after experimental challenge with Leishmania chagasi plus saliva of Lutzomyia longipalpis. Vet Parasitol. 2013;198:371–81.

    Article  CAS  Google Scholar 

  • de Mendonça LZ, Resende LA, Lanna MF, Aguiar-Soares RD, Roatt BM, Castro RA, et al. Multicomponent LBSap vaccine displays immunological and parasitological profiles similar to those of Leish-Tec® and Leishmune® vaccines against visceral leishmaniasis. Parasit Vectors. 2016;9:472.

    Article  Google Scholar 

  • Raymond F, Boisvert S, Roy G, Ritt JF, Legare D, Isnard A, et al. Genome sequencing of the lizard parasite Leishmania tarentolae reveals loss of genes associated to the intracellular stage of human pathogenic species. Nucleic Acids Res. 2012;40:1131–47.

    Article  CAS  Google Scholar 

  • Geroldinger G, Rezk M, Idris R, Gruber V, Tonner M, Moldzio R, et al. Techniques to study phagocytosis and uptake of Leishmania tarentolae by J774 macrophages. Exp Parasitol. 2019;197:57–64.

    Article  CAS  Google Scholar 

  • Burza S, Croft SL, Boelaert M. Leishmaniasis. Lancet. 2018;392:951–70.

    Article  Google Scholar 

  • Rossi M, Fasel N. How to master the host immune system? Leishmania parasites have the solutions! Int Immunol. 2018;30:103–11.

    Article  CAS  Google Scholar 

  • Varotto-Boccazzi I, Epis S, Arnoldi I, Corbett Y, Gabrieli P, Paroni M, et al. Boosting immunity to treat parasitic infections: Asaia bacteria expressing a protein from Wolbachia determine M1 macrophage activation and killing of Leishmania protozoans. Pharmacol Res. 2020;161:105288.

    Article  CAS  Google Scholar 

  • Ansari N, Rafati S, Taheri T, Roohvand F, Farahmand M, Hajikhezri Z, et al. Non-pathogenic Leishmania tarentolae vector based- HCV polytope DNA vaccine elicits potent and long lasting Th1 and CTL responses in BALB/c mice model. Mol Immunol. 2019;111:152–61.

    Article  Google Scholar 

  • Salari S, Sharifi I, Keyhani AR, GhasemiNejadAlmani P. Evaluation of a new live recombinant vaccine against cutaneous leishmaniasis in BALB/c mice. Parasit Vectors. 2020;13:415.

    Article  CAS  Google Scholar 

  • Badirzadeh A, Montakhab-Yeganeh H, Miandoabi T. Arginase/nitric oxide modifications using live non-pathogenic Leishmania tarentolae as an effective delivery system inside the mammalian macrophages. J Parasit Dis. 2021;45:65–71.

    Article  Google Scholar 

  • Keshavarzian N, Noroozbeygi M, Haji M, Hoseini M, Yeganeh F. Evaluation of leishmanization using Iranian lizard Leishmania mixed with CpG-ODN as a candidate vaccine against experimental murine leishmaniasis. Front Immunol. 2020;11:1725.

    Article  CAS  Google Scholar 

  • Haghdoust S, Noroozbeygi M, Hajimollahoseini M, Masooleh MM, Yeganeh F. A candidate vaccine composed of live nonpathogenic Iranian lizard Leishmania mixed with chitin microparticles protects mice against Leishmania major infection. Acta Trop. 2021;227:106298.

    Article  Google Scholar 

  • Mizbani A, Taheri T, Zahedifard F, Taslimi Y, Azizi H, Azadmanesh K, et al. Recombinant Leishmania tarentolae expressing the A2 virulence gene as a novel candidate vaccine against visceral leishmaniasis. Vaccine. 2009;28:53–62.

    Article  Google Scholar 

  • Kelly BL, Stetson DB, Locksley RM. Leishmania major LACK antigen is required for efficient vertebrate parasitization. J Exp Med. 2003;198:1689–98.

    Article  CAS  Google Scholar 

  • de Mendonça SC, Cysne-Finkelstein L, Matos DC. Kinetoplastid membrane protein-11 as a vaccine candidate and a virulence factor in Leishmania. Front Immunol. 2015;6:524.

    Article  Google Scholar 

  • Pirdel L, Farajnia S. A non-pathogenic recombinant Leishmania expressing Lipophosphoglycan 3 against experimental infection with Leishmania infantum. Scand J Immunol. 2017;86:15–22.

    Article  CAS  Google Scholar 

  • Vasquez RE, Soong L. CXCL10/gamma interferon-inducible protein 10-mediated protection against Leishmania amazonensis infection in mice. Infect Immun. 2006;74:6769–77.

    Article  CAS  Google Scholar 

  • Montakhab-Yeganeh H, Abdossamadi Z, Zahedifard F, Taslimi Y, Badirzadeh A, Saljoughian N, et al. Leishmania tarentolae expressing CXCL-10 as an efficient immunotherapy approach against Leishmania major-infected BALB/c mice. Parasite Immunol. 2017;39:e12461.

    Article  Google Scholar 

  • Dutta P, Das S. Mammalian antimicrobial peptides: promising therapeutic targets against infection and chronic inflammation. Curr Top Med Chem. 2016;16:99–129.

    Article  CAS  Google Scholar 

  • Abdossamadi Z, Taheri T, Seyed N, Montakhab-Yeganeh H, Zahedifard F, Taslimi Y, et al. Live Leishmania tarentolae secreting HNP1 as an immunotherapeutic tool against Leishmania infection in BALB/c mice. Immunotherapy. 2017;9:1089–102.

    Article  CAS  Google Scholar 

  • Lestinova T, Rohousova I, Sima M, de Oliveira CI, Volf P. Insights into the sand fly saliva: blood-feeding and immune interactions between sand flies, hosts, and Leishmania. PLoS Negl Trop Dis. 2017;11:e0005600.

    Article  Google Scholar 

  • Zahedifard F, Gholami E, Taheri T, Taslimi Y, Doustdari F, Seyed N, et al. Enhanced protective efficacy of nonpathogenic recombinant Leishmania tarentolae expressing cysteine proteinases combined with a sand fly salivary antigen. PLoS Negl Trop Dis. 2014;8:e2751.

    Article  Google Scholar 

  • Katebi A, Gholami E, Taheri T, Zahedifard F, Habibzadeh S, Taslimi Y, et al. Leishmania tarentolae secreting the sand fly salivary antigen PpSP15 confers protection against Leishmania major infection in a susceptible BALB/c mice model. Mol Immunol. 2015;67:501–11.

    Article  CAS  Google Scholar 

  • Lajevardi MS, Gholami E, Taheri T, Sarvnaz H, Habibzadeh S, Seyed N, et al. Leishmania tarentolae as potential live vaccine co-expressing distinct salivary gland proteins against experimental cutaneous leishmaniasis in BALB/c mice model. Front Immunol. 2022;13:895234.

    Article  CAS  Google Scholar 

  • Hahn WO, Wiley Z. COVID-19 vaccines. Infect Dis Clin North Am. 2022;36:481–94.

    Article  Google Scholar 

  • Lee MH, Kim BJ. COVID-19 vaccine development based on recombinant viral and bacterial vector systems: combinatorial effect of adaptive and trained immunity. J Microbiol. 2022;60:321–34.

    Article  CAS  Google Scholar 

  • Soto JA, Díaz FE, Retamal-Díaz A, Gálvez NMS, Melo-González F, Piña-Iturbe A, et al. BCG-Based vaccines elicit antigen-specific adaptive and trained immunity against SARS-CoV-2 and Andes orthohantavirus. Vaccines. 2022;10:721.

    Article  CAS  Google Scholar 

  • Yoon W, Park Y, Kim S, Bang IS. Development of an oral Salmonella-based vaccine platform against SARS-CoV-2. Vaccines. 2022;10:67.

    Article  CAS  Google Scholar 

  • Walsh G, Jefferis R. Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol. 2006;24:1241–52.

    Article  CAS  Google Scholar 

  • McElwain L, Phair K, Kealey C, Brady D. Current trends in biopharmaceuticals production in Escherichia coli. Biotechnol Lett. 2022;44:917–31.

    Article  CAS  Google Scholar 

  • Lei H, Xie B, Gao T, Cen Q, Ren Y. Yeast display platform technology to prepare oral vaccine against lethal H7N9 virus challenge in mice. Microb Cell Fact. 2020;19:53.

    Article  CAS  Google Schola...

  • Comments

    Popular posts from this blog